irreducible polynomial

英 [ˌɪrɪˈdjuːsəbl ˌpɒli'nəʊmiəl] 美 [ˌɪrɪˈduːsəbl ˌpɑli'noʊmiəl]

网络  不可约多项式; 多项式; 既约多项式

计算机



双语例句

  1. Judgement Method of Irreducible Polynomial in Two Variables a judgment or ruling by the people's court of second instance is one of final instance.
    有理数域上二元不可约多项式的判别第二审人民法院的判决、裁定,是终审的判决、裁定。
  2. New algorithm for spectral mixture analysis based on Fisher discriminant analysis: evidence from laboratory experiment judgement method of irreducible polynomial in two variables
    二元二次多项式可在实数范围内分解因式的判别法一种新的基于Fisher判别的混合像元分解算法:室内控制实验结果分析
  3. RECOGNITION OF β-HAIRPIN MOTIFS IN PROTEINS BY USING QUADRATIC DISCRIMINANT Judgement Method of Irreducible Polynomial in Two Variables
    用二次判别方法识别蛋白质β-发夹模体有理数域上二元不可约多项式的判别
  4. This paper offers several theorems on judging irreducible polynomial of integral coefficient, which has more generality than those given out in the article ( 1).
    本文给出几个判断整系数不可约多项式的定理,比文[1]给出的定理更具有一般性。
  5. In this paper, we present a link between the representation of a root of a basic irreducible polynomial f ( x) over Galois ring and its order, and derive two algebraic discriminants respectively for primitive polynomials and sub primitive polynomials.
    本文给出Galois环R上的基本不可约多项式f(x)的根的具体表达式和其阶的联系;
  6. The criterion of the irreducible polynomial of integer coefficient
    整系数多项式不可约的一个判别法
  7. In dual galois field n irreducible polynomial
    二元有限域上的n次不可约多项式
  8. The algorithm applied the characteristic of the small second item's degree of irreducible polynomial in characteristic 2 finite field.
    该算法利用了特征为2的有限域中的不可约多项式第二项次数较小的特点。
  9. This article according to in the galois field n irreducible polynomial some nature, further has carried on the introduction and the proof to in dual galois field n irreducible polynomial several nature.
    本文根据有限域Fq上n次不可约多项式的一些性质,进一步对二元有限域上的n次不可约多项式的几个性质进行了引入及证明。
  10. A note of irreducible polynomial on Q
    关于Q上不可约多项式的一个注记
  11. Irreducible Polynomial of Integral Coefficient
    关于整系数不可约多项式
  12. The irreducible polynomials over finite fields, which are the prime elements of the rings of polynomial, are indispensable for the construction of finite fields and computing with the elements of finite fields.
    而有限域上的不可约多项式,即有限域上多项式环的素元,对于构造有限域和计算有限域的元素个数又是必不可少的。